
Answer: C
Recall that len returns the length of its argument, so t must be an integer. Here all 
copies of "ss" "Mississippi" are replaced with "a" to create "Miaiaippi”, which has 
length 9.

Adapted from CS1 in Python Peer Instruction Materials by Daniel Zingaro is licensed 
under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License.
Based on a work at http://www.peerinstruction4cs.org/. Permissions beyond the 
scope of this license may be available at http://www.peerinstruction4cs.org/.



Answer: C
The upper method creates a new string "MISSISSIPPI" (all caps). When we invoke 
replace on that string (returned by upper), there are no instances
of lower case "ss" (Python distinguishes between upper and lower case letters), and 
so no replacements will be performed. Thus t is "MISSISSIPPI".



Answer: C
After a.remove(4), a is [2, 6, 8], after a.pop(2), the item at index 2 is removed, so a is 
[2,6]



Answer: D
After a.pop(2), the item at index 2 is removed, so a is [2,4,8] and a.remove(4), a is 
[2,8]



Answer: A

The lower method is only defined on strings. There is no notion of transforming a list 
of arbitrary values to lower case. B and C work on both types.



Answer: B
Invoking the lower method does not change the string s, it remains “CS”. The loop 
executes two iterations, printing the concatenation of the characters in s and t at index 
0, then index 1.



Answer: A
When s is assigned to t, both point to “abc”. When we invoke s.upper(), that doesn’t 
change that string, but instead creates a new string “ABC”. After assigning that value 
to s, it now points to “ABC”, but that statement does not change that t points to “abc”. 
Check out what happens at pythontutor.com:
https://pythontutor.com/visualize.html#code=s%20%3D%20%22abc%22%0At%20%3
D%20s%0As%20%3D%20s.upper%28%29&cumulative=false&curInstr=0&heapPrimi
tives=true&mode=display&origin=opt-
frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


